Bibliography

[1]

Robin Harper, Ian Hincks, Chris Ferrie, Steven T. Flammia, and Joel J. Wallman. Statistical analysis of randomized benchmarking. Phys. Rev. A, 99:052350, 2019. doi:10.1103/PhysRevA.99.052350.

[2]

Joseph Emerson, Robert Alicki, and Karol Życzkowski. Scalable noise estimation with random unitary operators. J. Opt. B: Quantum Semiclassical Opt., 7(10):S347–S352, 2005. doi:10.1088/1464-4266/7/10/021.

[3]

Christoph Dankert, Richard Cleve, Joseph Emerson, and Etera Livine. Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A, 80:012304, 2009. doi:10.1103/PhysRevA.80.012304.

[4]

Easwar Magesan, J. M. Gambetta, and Joseph Emerson. Scalable and Robust Randomized Benchmarking of Quantum Processes. Phys. Rev. Lett., 106:180504, 2011. doi:10.1103/PhysRevLett.106.180504.

[5]

Easwar Magesan, Jay M. Gambetta, B. R. Johnson, Colm A. Ryan, Jerry M. Chow, Seth T. Merkel, Marcus P. da Silva, George A. Keefe, Mary B. Rothwell, Thomas A. Ohki, Mark B. Ketchen, and M. Steffen. Efficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking. Phys. Rev. Lett., 109:080505, 2012. doi:10.1103/PhysRevLett.109.080505.

[6]

Arnaud Carignan-Dugas, Joel J. Wallman, and Joseph Emerson. Bounding the average gate fidelity of composite channels using the unitarity. New J. Phys., 21:053016, 2019. doi:10.1088/1367-2630/ab1800.

[7]

Joel Wallman, Chris Granade, Robin Harper, and Steven T. Flammia. Estimating the coherence of noise. New J. Phys., 17:113020, 2015. doi:10.1088/1367-2630/17/11/113020.

[8]

Arnaud Carignan-Dugas, Matthew Alexander, and Joseph Emerson. A polar decomposition for quantum channels (with applications to bounding error propagation in quantum circuits). Quantum, 3:173, 2019. doi:10.22331/q-2019-08-12-173.

[9]

Alexander Erhard, Joel J. Wallman, Lukas Postler, Michael Meth, Roman Stricker, Esteban A. Martinez, Philipp Schindler, Thomas Monz, Joseph Emerson, and Rainer Blatt. Characterizing large-scale quantum computers via cycle benchmarking. Nat. Commun., 10:5347, 2019. doi:10.1038/s41467-019-13068-7.

[10]

Steven T. Flammia and Joel J. Wallman. Efficient Estimation of Pauli Channels. ACM Trans. Quantum Comput., 2020. doi:10.1145/3408039.

[11]

Joel J. Wallman and Joseph Emerson. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A, 94:052325, 2016. doi:10.1103/PhysRevA.94.052325.

[12]

Joel J. Wallman and Steven T. Flammia. Randomized benchmarking with confidence. New J. Phys., 16:103032, 2014. doi:10.1088/1367-2630/16/10/103032.

[13]

Yuval R. Sanders, Joel J. Wallman, and Barry C. Sanders. Bounding quantum gate error rate based on reported average fidelity. New J. Phys., 18:012002, 2015. doi:10.1088/1367-2630/18/1/012002.

[14]

Joel J. Wallman. Bounding experimental quantum error rates relative to fault-tolerant thresholds. 2016. arXiv:1511.00727.

[15]

J. Kelly, R. Barends, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, I.-C. Hoi, E. Jeffrey, A. Megrant, J. Mutus, C. Neill, P. J. J. O'Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and John M. Martinis. Optimal Quantum Control Using Randomized Benchmarking. Phys. Rev. Lett., 112:240504, 2014. doi:10.1103/PhysRevLett.112.240504.

[16]

Wojciech Bruzda, Valerio Cappellini, Hans-Jürgen Sommers, and Karol Życzkowski. Random quantum operations. Phys. Lett. A, 373:320–324, 2009. doi:10.1016/j.physleta.2008.11.043.

[17]

John Watrous. Simpler semidefinite programs for completely bounded norms. 2012. arXiv:1207.5726.

[18]

Daniel Miller, Timo Holz, Hermann Kampermann, and Dagmar Bruss. Propagation of generalized pauli errors in qudit clifford circuits. Phys. Rev. A, 98:052316, Nov 2018. URL: https://link.aps.org/doi/10.1103/PhysRevA.98.052316, doi:10.1103/PhysRevA.98.052316.

[19]

Ian Hincks, Joel J. Wallman, Chris Ferrie, Chris Granade, and David G. Cory. Bayesian Inference for Randomized Benchmarking Protocols. 2018. arXiv:1802.00401.

[20]

Matthew A. Graydon, Joshua Skanes-Norman, and Joel J. Wallman. Clifford groups are not always 2-designs. 2021. arXiv:2108.04200.